Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(append, nil), l) → l
app(app(append, app(app(cons, h), t)), l) → app(app(cons, h), app(app(append, t), l))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(append, app(app(append, l1), l2)), l3) → app(app(append, l1), app(app(append, l2), l3))
app(app(map, f), app(app(append, l1), l2)) → app(app(append, app(app(map, f), l1)), app(app(map, f), l2))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(append, nil), l) → l
app(app(append, app(app(cons, h), t)), l) → app(app(cons, h), app(app(append, t), l))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(append, app(app(append, l1), l2)), l3) → app(app(append, l1), app(app(append, l2), l3))
app(app(map, f), app(app(append, l1), l2)) → app(app(append, app(app(map, f), l1)), app(app(map, f), l2))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

APP(app(append, app(app(append, l1), l2)), l3) → APP(append, l2)
APP(app(append, app(app(cons, h), t)), l) → APP(append, t)
APP(app(append, app(app(append, l1), l2)), l3) → APP(app(append, l1), app(app(append, l2), l3))
APP(app(append, app(app(cons, h), t)), l) → APP(app(append, t), l)
APP(app(append, app(app(cons, h), t)), l) → APP(app(cons, h), app(app(append, t), l))
APP(app(map, f), app(app(append, l1), l2)) → APP(app(map, f), l2)
APP(app(map, f), app(app(cons, h), t)) → APP(f, h)
APP(app(map, f), app(app(cons, h), t)) → APP(app(map, f), t)
APP(app(map, f), app(app(append, l1), l2)) → APP(app(append, app(app(map, f), l1)), app(app(map, f), l2))
APP(app(append, app(app(append, l1), l2)), l3) → APP(app(append, l2), l3)
APP(app(map, f), app(app(cons, h), t)) → APP(cons, app(f, h))
APP(app(map, f), app(app(append, l1), l2)) → APP(append, app(app(map, f), l1))
APP(app(map, f), app(app(cons, h), t)) → APP(app(cons, app(f, h)), app(app(map, f), t))
APP(app(map, f), app(app(append, l1), l2)) → APP(app(map, f), l1)

The TRS R consists of the following rules:

app(app(append, nil), l) → l
app(app(append, app(app(cons, h), t)), l) → app(app(cons, h), app(app(append, t), l))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(append, app(app(append, l1), l2)), l3) → app(app(append, l1), app(app(append, l2), l3))
app(app(map, f), app(app(append, l1), l2)) → app(app(append, app(app(map, f), l1)), app(app(map, f), l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(append, app(app(append, l1), l2)), l3) → APP(append, l2)
APP(app(append, app(app(cons, h), t)), l) → APP(append, t)
APP(app(append, app(app(append, l1), l2)), l3) → APP(app(append, l1), app(app(append, l2), l3))
APP(app(append, app(app(cons, h), t)), l) → APP(app(append, t), l)
APP(app(append, app(app(cons, h), t)), l) → APP(app(cons, h), app(app(append, t), l))
APP(app(map, f), app(app(append, l1), l2)) → APP(app(map, f), l2)
APP(app(map, f), app(app(cons, h), t)) → APP(f, h)
APP(app(map, f), app(app(cons, h), t)) → APP(app(map, f), t)
APP(app(map, f), app(app(append, l1), l2)) → APP(app(append, app(app(map, f), l1)), app(app(map, f), l2))
APP(app(append, app(app(append, l1), l2)), l3) → APP(app(append, l2), l3)
APP(app(map, f), app(app(cons, h), t)) → APP(cons, app(f, h))
APP(app(map, f), app(app(append, l1), l2)) → APP(append, app(app(map, f), l1))
APP(app(map, f), app(app(cons, h), t)) → APP(app(cons, app(f, h)), app(app(map, f), t))
APP(app(map, f), app(app(append, l1), l2)) → APP(app(map, f), l1)

The TRS R consists of the following rules:

app(app(append, nil), l) → l
app(app(append, app(app(cons, h), t)), l) → app(app(cons, h), app(app(append, t), l))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(append, app(app(append, l1), l2)), l3) → app(app(append, l1), app(app(append, l2), l3))
app(app(map, f), app(app(append, l1), l2)) → app(app(append, app(app(map, f), l1)), app(app(map, f), l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 7 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(app(append, app(app(append, l1), l2)), l3) → APP(app(append, l2), l3)
APP(app(append, app(app(append, l1), l2)), l3) → APP(app(append, l1), app(app(append, l2), l3))
APP(app(append, app(app(cons, h), t)), l) → APP(app(append, t), l)

The TRS R consists of the following rules:

app(app(append, nil), l) → l
app(app(append, app(app(cons, h), t)), l) → app(app(cons, h), app(app(append, t), l))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(append, app(app(append, l1), l2)), l3) → app(app(append, l1), app(app(append, l2), l3))
app(app(map, f), app(app(append, l1), l2)) → app(app(append, app(app(map, f), l1)), app(app(map, f), l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP(app(append, app(app(append, l1), l2)), l3) → APP(app(append, l2), l3)
APP(app(append, app(app(append, l1), l2)), l3) → APP(app(append, l1), app(app(append, l2), l3))
The remaining pairs can at least be oriented weakly.

APP(app(append, app(app(cons, h), t)), l) → APP(app(append, t), l)
Used ordering: Polynomial interpretation [25,35]:

POL(APP(x1, x2)) = (4)x_1   
POL(append) = 4   
POL(cons) = 0   
POL(app(x1, x2)) = (1/4)x_1 + (4)x_2   
POL(nil) = 0   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(app(append, app(app(cons, h), t)), l) → APP(app(append, t), l)

The TRS R consists of the following rules:

app(app(append, nil), l) → l
app(app(append, app(app(cons, h), t)), l) → app(app(cons, h), app(app(append, t), l))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(append, app(app(append, l1), l2)), l3) → app(app(append, l1), app(app(append, l2), l3))
app(app(map, f), app(app(append, l1), l2)) → app(app(append, app(app(map, f), l1)), app(app(map, f), l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP(app(append, app(app(cons, h), t)), l) → APP(app(append, t), l)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(APP(x1, x2)) = (2)x_1   
POL(append) = 0   
POL(cons) = 0   
POL(app(x1, x2)) = 4 + (2)x_2   
The value of delta used in the strict ordering is 16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(append, nil), l) → l
app(app(append, app(app(cons, h), t)), l) → app(app(cons, h), app(app(append, t), l))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(append, app(app(append, l1), l2)), l3) → app(app(append, l1), app(app(append, l2), l3))
app(app(map, f), app(app(append, l1), l2)) → app(app(append, app(app(map, f), l1)), app(app(map, f), l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(append, l1), l2)) → APP(app(map, f), l2)
APP(app(map, f), app(app(cons, h), t)) → APP(f, h)
APP(app(map, f), app(app(cons, h), t)) → APP(app(map, f), t)
APP(app(map, f), app(app(append, l1), l2)) → APP(app(map, f), l1)

The TRS R consists of the following rules:

app(app(append, nil), l) → l
app(app(append, app(app(cons, h), t)), l) → app(app(cons, h), app(app(append, t), l))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(append, app(app(append, l1), l2)), l3) → app(app(append, l1), app(app(append, l2), l3))
app(app(map, f), app(app(append, l1), l2)) → app(app(append, app(app(map, f), l1)), app(app(map, f), l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(append, l1), l2)) → APP(app(map, f), l2)
APP(app(map, f), app(app(cons, h), t)) → APP(f, h)
APP(app(map, f), app(app(cons, h), t)) → APP(app(map, f), t)
APP(app(map, f), app(app(append, l1), l2)) → APP(app(map, f), l1)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(APP(x1, x2)) = (4)x_1 + (1/4)x_2   
POL(append) = 4   
POL(cons) = 1/2   
POL(map) = 4   
POL(app(x1, x2)) = 1/4 + (1/4)x_1 + (4)x_2   
The value of delta used in the strict ordering is 11/128.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(append, nil), l) → l
app(app(append, app(app(cons, h), t)), l) → app(app(cons, h), app(app(append, t), l))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(append, app(app(append, l1), l2)), l3) → app(app(append, l1), app(app(append, l2), l3))
app(app(map, f), app(app(append, l1), l2)) → app(app(append, app(app(map, f), l1)), app(app(map, f), l2))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.